Вольтметр на пик. Встраиваемый ампер-вольтметр на PIC12F675 и LED-индикаторах. Принципиальная схема вольтметра для измерения переменного напряжения

Реализация вольтметра от Владимира

Добавлены ключи на аноды индикатора, что повысило яркость дисплея, и позволяет использовать более мощные дисплеи.

Две печатки под DIP14 и SO14

В схеме применены транзисторы BC847 (КТ3102).

Во время обновления основной статьи вольтметра в схеме и печатках от Владимира был заменён делитель напряжения. Прошивки к вольтметру лежат в основной статье .

Реализация сетевого вольтметра от Wali Marat

Печатка отличается от схемы заменой резисторов R2 и R3 на один подстроечный 4,7к и отсутствием стабилитрона VD1.

Также была прислана модифицированная схема сетевого вольтметра, она отличается более качественной схемой стабилизации напряжения питания вольтметра.

Фото сетевого вольтметра

Реализация вольтметра/амперметра от Wali Marat

Во все схемы от Wali Marat был добавлен стабилитрон VD1 на 5,1В(обозначен зелёным цветом), для защиты входа АЦП микроконтроллера от перенапряжения.

Принципиальная схема и описание самодельного цифрового амперметра, выполненного на микроконтроллере ATtiny13, программа и печатная плата.

Как-то раз в руки к автору этих строк попало весьма интересное устройство,рожденное в СССР, в далеком 1976 году -его просто отдали за ненадобностью. Звали это устройство АДЗ-101У2, и оно представляло собой типичный образчик советского конструктивизма: тяжелый двадцатикилограммовый "чемодан", с ручкой для переноски в верхней части и мощным однофазным трансформатором внутри.

Но самое интересное, что у этого "чемодана" напрочь отсутствовала задняя панель - и вовсе не потому, что прибор успел ее "посеять", нет. А дело здесь было в том, что обе его панели являлись... передними! С одной своей стороны "чемодан" представлял собой сварочный аппарат, а с другой - зарядное устройство для автомобильных аккумуляторов.

И если как "сварочник" он особых эмоций не вызвал - еще бы, ведь всего-то 50 А переменного тока; то вот "зарядник" - вещь в хозяйстве, безусловно, нужная. Испытания прибора подтвердили его полную боеспособность (даже сварка работала!), но без недостатков, разумеется, не обошлось.

Суть проблемы состояла в том, что штатный амперметр "зарядника" скрылся в неизвестном направлении, и предыдущий владелец аппарата подыскал ему вполне "равноценную" замену - автомобильный амперметр, скрученный с какого-то военного грузовика, и имеющий очень "информативную" шкалу в ±30 А!

Понятно, что следить за зарядом аккумулятора (а ток зарядки - всего лишь 3-6 А!) при помощи такого вот прибора, мягко говоря, проблематично - как будто и нет его вовсе...

Поэтому решено было заменить "грузовиковый показометр" на какой-либо более или менее адекватный прибор, с внятной шкалой на 0-10 А. Идеальным кандидатом на эту роль представлялся стрелочный щитовой амперметр со встроенным шунтом - один из тех, которые раньше использовались практически во всех "зарядниках" советского производства, да и много где еще.

Однако, первая же прогулка по электромагазинам и "развалам" принесла разочарование: оказывается, ничего, хотя бы отдаленно напоминающего искомый прибор, уже давным-давно в продаже нет...

А так-так в то время автор еще не был знаком с бескрайними просторами китайских чудосайтов, то руки вновь потянулись к паяльнику, в результате чего и было разработано устройство, схема которого приведена на рис.1, а характеристики - в табл.1:

Таблица 1. Характеристики устройства.

Принципиальная схема

Для вывода результатов измерения в данном амперметре решено было использовать пару 7-сегментых LED-индикаторов. Такие индикаторы, несмотря на некоторую свою архаичность по сравнению с новомодными LCD-модулями типа 16хх, обладают также и рядом неоспоримых преимуществ: они гораздо надежнее и прочнее; не портятся и не мутнеют от контакта с нефтепродуктами (а замасленные руки в гараже - дело обычное, цифры на LED-индикаторах ярче и гораздо "читабельнее" - особенно издали; и к тому же, никакой холод в гараже светодиодам не страшен - в отличие от ЖК, который на морозе попросту "слепнет".

Ну а последним доводом в пользу светодиодной матрицы - в контексте данной разработки - стал тот факт, что длинный 1602 просто-напросто не вписывался по размерам в штатное отверстие для амперметра (круглое и очень небольшое!) на корпусе ЗУ. Определившись с типом индикатора, встал другой вопрос - какой же микроконтроллер использовать в качестве основы для данного устройства.

В том, что эту схему нужно строить именно на МК, сомнений никаких не возникало -делая амперметр на "КМОП-россыпи", можно повредиться рассудком. На первый взгляд, самым очевидным решением является "рабочая лошадка" ATtiny2313 -этот МК имеет достаточно развитую архитектуру, и вполне подходящее для подключения LED-матрицы количество линий ввода-вывода.

Однако, здесь все оказалось не так уж и просто - ведь для измерения тока в состав МК обязательно должен входить аналогово-цифровой преобразователь, но инженеры фирмы Atmel почему-то не оснастили "2313-й" данной функцией... Другое дело семейство Меда: эти чипы обязательно имеют "на борту" модуль АЦП.

Но, с другой стороны, даже ATMega8в - как самый простой представитель "старшего" семейства - обладает гораздо большей функциональностью, чем того требует построение простого амперметра. А это уже не самое лучшее решение с точки зрения классического подхода к проектированию!

Под "классическим подходом к проектированию" здесь подразумевается так называемый "принцип необходимого минимума" (горячим приверженцем которого, в пику новомодным "Ардуинам", является и автор этих строк), согласно которому любую систему следует проектировать с использованием минимально возможного количества ресурсов; а окончательный результат должен содержать в себе как можно меньше незадействованных элементов. Поэтому, в соответствии с этим принципом - простому прибору -простой микроконтроллер, и никак иначе!

Правда, и не все простые МК подойдут для поставленной задачи. Взять, к примеру, ATtinyl3 - в нем есть АЦП, он прост и недорог; да вот только линий ввода-вывода - для подключения матрицы из двух "семисегментников" - у него явно маловато...

Хотя, если немного пофантазировать, то такая проблема вполне разрешима - при помощи копеечного счетчика К176ИЕ4 и несложного алгоритма, этим счетчиком управляющего.

Вдобавок, у такого подхода есть даже положительные стороны - во-первых, отпадает необходимость "навешивать" на каждый сегмент индикатора по токоограничительному резистору (генераторы тока уже имеются в выходных каскадах счетчика); а во-вторых, в данной схеме можно использовать индикатор как с общим катодом, так и с общим анодом - для перехода на "общий анод" нужно изменить подключение транзисторов VT1 и VT2, выв. 6 DD2 подключить к линии +9 В через резистор 1 кОм, а левый вывод R3 соединить с "землей".

Рис. 1. Принципиальная схема самодельного амперметра (до 10А) на микроконтроллере ATtiny13.

Для того, чтобы управлять счетчиком при помощи МК, нужно задействовать всего две линии: одну - для сигнала счета (С), а другую -для сигнала сброса (R).

Причем, в ходе испытания устройства выяснилось, что КМОП-микросхема К176ИЕ4, будучи подключенной напрямую к линиям МК, вполне надежно работает с его ТТЛ-уровнями - без какого-либо дополнительного согласования.

А еще две линии МК управляют ключами VТ1-VТ2, создавая динамическую индикацию. Фрагмент исходного кода, где реализована процедура управления счетчиком DD2, приведен в листинге:

Рис. 2. Процедура управления К176ИЕ4.

Процедура написана на низкоуровневом языке AVR-Assembler; однако, она легко может быть переведена и на любой язык высокого уровня. В регистре Temp процедура получает число, которое необходимо отправить в счетчик К176ИЕ4 для отображения на индикаторе; линия 1 порта В микроконтроллера подключена ко входу сброса счетчика (R), а линия 2 - к его счетному входу (С).

Чтобы избежать мерцания чисел в момент переключения счетчика, перед вызовом данной процедуры необходимо погасить оба разряда, закрыв транзисторы VT1 и VT2 подачей лог.О на линии 0 и 4 порта В МК; ну а после того, как процедура отработает, уже можно зажигать тот или иной разряд индикатора. Кстати, благодаря счетчику К176ИЕ4, к любому МК можно подключить индикаторную матрицу 7x4, задействовав для этого только 6 линий ввода-вывода (две - для управления счетчиком, и еще четыре - для динамического переключения разрядов).

А если в "напарники" к К176ИЕ4 добавить еще один счетчик -декадный К176ИЕ8 - чтобы использовать его для "сканирования" разрядов; то появится возможность подключить к МК индикаторную матрицу величиной до 10 знакомест, выделив для этого всего лишь 5 линий ввода-вывода (две - для управления К176ИЕ8; две - для К176ИЕ4; и еще одна - для гашения индикатора в момент счета К176ИЕ4)!

В подобном случае алгоритм динамической индикации будет сводиться к управлению счетчиком К176ИЕ8, что во многом аналогично алгоритму передачи цифры в счетчик К176ИЕ4, приведенному в листинге выше.

К недостаткам же такого подключения индикаторной матрицы - помимо использования "лишней" микросхемы - можно отнести необходимость введения в схему дополнительного питания +9 В, т.к. попытки запитать КМОП-счетчики от +5 В, увы, не увенчались успехом...

В качестве индикатора в данном устройстве применим практически любой сдвоенный "семисегментник" с общими катодами, предназначенный для работы в схемах с динамической индикацией. Допустимо использовать и четырехразрядную матрицу, задействовав у нее только два из четырех имеющихся разрядов.

Правда, в процессе работы над схемой амперметра всплыла небольшая проблема - с подключением десятичной запятой: ведь она должна светиться в старшем разряде, и не гореть - в младшем.

И если все делать "по уму", то неплохо было бы выделить - для динамического управления этой самой запятой - еще одну ножку МК (т.к. в К176ИЕ4 никаких средств для управления запятыми не предусмотрено) - чтобы на нее "повесить" вывод индикатора, отвечающий за запятые.

Но, поскольку все линии ввода-вывода МК уже были заняты, то бороться с этой проблемой пришлось отнюдь не самым изящным способом: обе запятые решено было оставить постоянно зажженными, запитав соответствующий вывод индикаторной "матрицы" от линии +9 В через токоограничительный резистор R3 (подбирая его сопротивление, можно выровнять яркость свечения запятой относительно остальных сегментов); а лишнюю запятую в младшем разряде (крайнюю правую) просто замазать каплей черной нитрокраски.

С технической точки зрения такое решение сложно назвать идеальным; но в глаза "загримированная" подобным образом запятая совершенно никак не бросается...

В качестве датчика тока используются два параллельно соединенных резистора R1 и R2, мощностью по 5 Вт каждый. Вместо пары R1 и R2 вполне можно установить и один резистор сопротивлением 0,05 Ом - в таком случае его мощность должна быть не менее 7 Вт.

Более того, в "прошивке" микроконтроллера предусмотрена возможность выбора сопротивления измерительного шунта - в данной схеме может быть применен как 0,05-омный, так и 0,1-омный датчик тока.

Для того, чтобы задать микроконтроллеру сопротивление шунта, использующегося в конкретном случае, необходимо записать определенное значение в ячейку памяти EEPROM, расположенную по адресу 0x00 - для сопротивления 0,1 Ом это может быть любое число меньше 128 (в таком случае МК, будет делить результат измерений на 2); а при использовании шунта сопротивлением 0,05 Ом в эту ячейку, соответственно, следует записать число больше 128.

И если планируется эксплуатировать устройство с приведенным на схеме 0,05-омным шунтом, то о записи указанной ячейки можно и вовсе не беспокоиться, т.к. у нового (или "стертого в ноль") МК во всех ячейках памяти итак будет число 255 (0xFF).

Питать прибор можно как от отдельного источника - напряжением не менее 12 В, так и от силового трансформатора самого зарядного устройства. Если питание будет производиться от трансформатора ЗУ, то желательно задействовать для этого отдельную обмотку, никак не связанную с зарядной цепью; однако, допускается питать амперметр и от одной из зарядных обмоток.

В этом случае напряжение питания нужно брать до выпрямительного моста "зарядника" (т.е., непосредственно с обмотки), а в разрыв обоих проводов питания амперметра включить по резистору 75 Ом/1 Вт. Резисторы необходимы для зашиты "отрицательных" диодов моста VD1-4 от прохождения через них части зарядного тока.

Дело в том, что если подключить прибор к зарядной обмотке, не установив этих резисторов то, учитывая общую "землю" у моста VD1-4 и диодного моста зарядного устройства, около половины зарядного тока аккумулятора будет возвращаться в обмотку не через мощные диоды выпрямителя ЗУ, а через "отрицательное" плечо моста VD1-4, вызывая сильный нагрев маломощных 1N4007.

Установка же этих резисторов ограничит ток питания прибора и оградит диодный мост VD1-4 от протекания зарядного тока, который теперь, практически полностью, будет течь по "правильной" цепи - через мощные диоды выпрямителя ЗУ.

Принципиальная схема

Печатная плата для данного амперметра разрабатывалась под конкретные посадочные места в корпусе конкретного ЗУ; ее чертеж приведен на рис.3.

Индикаторная матрица устанавливается отдельно - на небольшой платке (отрезке "макетки" 30x40), которая крепится к основной плате болтами М2,5 через дистанционные втулки, со стороны монтажа; и соединяется с ней 10-жильным шлейфом.

Еще одной частью получившегося "бутерброда" является декоративная передняя панель из оргстекла, покрашенная с обратной стороны нитрокраской из баллончика (незакрашенным должен остаться только небольшой прямоугольник - "окошко" для индикатора).

Передняя панель также крепится к основной плате со стороны монтажа (болтами М3 с дистанционными втулками - ими же прибор крепится и к корпусу ЗУ). Печатные дорожки сильноточной цепи, идущие к резисторам R1 и R2, следует выполнить как можно более широкими, и припаять к ним выводы резисторов на всю длину, заодно усилив монтаж толстым слоем припоя.

В качестве выводов для подключения прибора к ЗУ желательно использовать два болта М3, припаяв их головки к плате, и закрепив с другой стороны гайками.

Рис. 3. Печатная плата для схемы цифрового амперметра на микроконтроллере.

Программа

При записи "прошивки" в МК его необходимо настроить для работы на частоте 1,2 МГц, от внутреннего тактового генератора. Для этого частоту тактирования следует выбрать равной 9,6 МГц, и включить внутренний делитель такта на 8.

Для увеличения надежности работы также желательно активировать внутренний супервайзор питания (модуль BOD), настроив его на сброс МК при "просадке" питающего напряжения ниже 2,7 В.

Все настройки производятся при помощи записи соответствующих значений в конфигурационные Fuse-ячейки: SUT1=1, SUT0=0, CKDIV8=0, BODLEVEL1 =0, BODLEVELO=1, WDTON=1. Остальные "фъюзы" можно оставить по умолчанию.

Прошивка для микроконтроллера и печатная плата формата Sprint Layout - Скачать .

Рис. 3. Плата амперметра на Attiny13 в сборе.

Рис. 4. Плата амперметра на Attiny13 в сборе (вид с обратной стороны).

Прошлым летом по просьбе знакомого разработал схему цифрового вольтметра и амперметра. В соответствии с просьбой данный измерительный прибор должен быть экономичный. Поэтому в качестве индикаторов для вывода информации был выбран однострочный жидкокристаллический дисплей. Вообще этот ампервольтметр предназначался для контроля разрядки автомобильного аккумулятора. А разряжался аккумулятор на двигатель небольшого водяного насоса. Насос качал воду через фильтр и опять возвращал ее по камушкам в небольшой прудик на даче.

Вообще в подробности этой причуды я не вникал. Не так давно этот вольтметр опять попал ко мне у руки для доработки программы. Все работает как положено, но есть еще одна просьба, чтобы установить светодиод индикации работы микроконтроллера. Дело в том, что однажды, из-за дефекта печатной платы, пропало питание микроконтроллера, естественно функционировать он перестал, а так как ЖК-дисплей имеет свой контроллер, то данные, загруженные в него ранее, напряжение на аккумуляторной батарее и ток, потребляемый насосом, так и остались на экране индикатора. Ранее я не задумывался о таком неприятном инциденте, теперь надо будет это дело учитывать в программе устройств и их схемах. А то будешь любоваться красивыми циферками на экране дисплея, а на самом деле все уже давно сгорело. В общем, батарея разрядилась полностью, что для знакомого, как он сказал, тогда было очень плохо.
Схема прибора с индикаторным светодиодом показана на рисунке.

Основой схемы являются микроконтроллер PIC16F676 и индикатор ЖКИ. Так, как все это работает исключительно в теплое время года, то индикатор и контроллер можно приобрести самые дешевые. Операционный усилитель выбран тоже соответствующий – LM358N, дешевый и имеющий диапазон рабочих температур от 0 до +70.
Для преобразования аналоговых величин (оцифровки) напряжения и тока выбрано стабилизированное напряжение питания микроконтроллера величиной +5В. А это значит, что при десятиразрядной оцифровке аналогового сигнала каждому разряду будет соответствовать – 5В = 5000 мВ = 5000/1024 = 4,8828125 мВ. Эта величина в программе умножается на 2, и получаем — 9,765625мВ на один разряд двоичного кода. А нам надо для корректного вывода информации на экран ЖКИ, чтобы один разряд был равен 10 мВ или 0,01 В. Поэтому в схеме предусмотрены масштабирующие цепи. Для напряжения, это регулируемый делитель, состоящий из резисторов R5 и R7. Для коррекции показаний величины тока служит масштабирующий усилитель, собранный на одном из операционных усилителей микросхемы DA1 – DA1.2. Регулировка коэффициента передачи этого усилителя осуществляется с помощью резистора R3 величиной 33к. Лучше, если оба подстроечных резистора будут многооборотными. Таким образом, при использование для оцифровки напряжения величиной ровно +5 В, прямое подключение сигналов на входы микроконтроллера запрещено. Оставшийся ОУ, включенный между R5 и R7 и входом RA1, микросхемы DD1, является повторителем. Служит для уменьшения влияния на оцифровку шумов и импульсных помех, за счет стопроцентной, отрицательной, частотно независимой обратной связи. Для уменьшения шумов и помех при преобразовании величины тока, служит П образный фильтр, состоящий из С1,С2 и R4. В большинстве случаев С2 можно не устанавливать.

В качестве датчика тока, резистор R2, используется отечественный заводской шунт на 20А – 75ШСУ3-20-0,5. При токе, протекающем через шунт в 20А, на нем упадет напряжение величиной 0,075 В (по паспорту на шунт). Значит, для того, чтобы на входе контроллера было два вольта, коэффициент усиления усилителя должен быть примерно 2В/0,075 = 26. Примерно — это потому, что у нас дискретность оцифровки не 0,01 В, а 0,09765625 В. Конечно, можно применить и самодельные шунты, откорректировав коэффициент усиления усилителя DA1.2. Коэффициент усиления данного усилителя равен отношению величин резисторов R1 и R3, Кус = R3/R1.
И так, исходя из выше сказанного, вольтметр имеет верхний предел – 50 вольт, а амперметр – 20 ампер, хотя при шунте, рассчитанном на 50 ампер, он будет измерять 50А. Так, что его можно с успехом установить в других устройствах.
Теперь о доработке, включающей в себя добавление индикаторного светодиода. В программу были внесены небольшие изменения и теперь, пока контроллер работает, светодиод моргает с частотой примерно 2 Гц. Время свечения светодиода выбрано 25мсек, для экономии. Можно было бы вывести на дисплей моргающий курсор, но сказали, что со светодиодом нагляднее и эффектнее. Вроде все. Успехов. К.В.Ю.


.

Один из вариантов готового устройства, реализованного Алексеем. К сожалению фамилии не знаю. Спасибо ему за работу и фото.

Вольтметр на PIC16F676 – статья, в которой расскажу о самостоятельной сборке цифрового вольтметра постоянного тока с пределом 0-50В. В статье приводится схема вольтметра на PIC16F676, а также печатная плата и прошивка. Вольтметр использовал для организации индикации в .

Технические характеристики вольтметра:

  • Дискретность отображения результата измерения 0,1В;
  • Погрешность 0,1…0,2В;
  • Напряжение питание вольтметра 7…20В.
  • Средний ток потребления 20мА

За основу конструкции взята схема автора Н.Заец из статьи «Миливольтметр». Сам автор очень щедрый и охотно делится своими разработками, как техническими, так и программными. Однако одним из существенных недостатков его конструкций (на мой взгляд) является морально-устаревшая элементная база. Использование которой, в нынешнее время, не совсем разумно.

На рисунке 1 показана принципиальная схема авторский вариант.

Бегло пробегусь по основным узлам схемы. Микросхема DA1 – регулируемый стабилизатор напряжения, выходное напряжение которого регулируется подстроенным резистором R4. Такое решение не очень хорошее, так как для нормальной работы вольтметра необходим отдельный источник постоянного тока напряжением 8В. И это напряжение должно быть неизменным. Если входное напряжение будет меняться, то и выходное напряжение будет изменяться, а это не допустимо. В моей практике такое изменение привело к перегоранию PIC16F676 - микроконтроллера.

Резисторы R5-R6 – это делитель входного (измеряемого) напряжения. DD1 - микроконтроллер, HG1-HG3 – три отдельных семисегментных индикатора, которые собраны в одну информационную шину. Применение отдельных семисегментных индикаторов сильно усложняют печатную плату. Такое решение тоже не очень хорошее. Да и потребление у АЛС324А приличное.

На рисунке 2 показана переделанная принципиальная схема цифрового вольтметра.

Рисунок 2 – Схема принципиальная вольтметра постоянного тока.

Теперь рассмотрим, какие изменения были внесены в схему.

Вместо регулируемого интегрального стабилизатора КР142ЕН12А было принято решение использовать интегральный стабилизатор LM7805 с постоянным выходным напряжением +5В. Тем самым удалось надежно стабилизировать рабочее напряжение микроконтроллера. Еще один плюс такого решение - это возможность применения входного (измеряемого) напряжения для питания схемы. Если, конечно, это напряжение больше 6В, но меньше 30В. Чтобы подключиться к входному напряжению, достаточно только замкнуть перемычку(jamper). Если сам стабилизатор сильно греется, его необходимо установить на радиатор.

Для защиты входа АЦП от перенапряжения в схему был добавлен стабилитрон VD1.

Резистор R4 совместно с конденсатором С3 - рекомендованы производителем, для надежного сброса микроконтроллера.

Вместо трех отдельных семисегментных индикаторов был применен один общий.

Для разгрузки отдельных ножек микроконтроллера были добавлены три транзистора.

В таблице 1 можно ознакомиться со всем перечнем деталей и возможной их заменой на аналог.

Таблица 1 – Перечень деталей для вольтметра на PIC16F676
Позиционное обозначение Наименование Аналог/замена
С1 Конденсатор электролитический - 470мкФх35В
С2 Конденсатор электролитический - 1000мкФх10В
С3 Конденсатор электролитический - 10мкФх25В
С4 Конденсатор керамический - 0,1мкФх50В
DA1 Интегральный стабилизатор L7805
DD1 Микроконтроллер PIC16F676
HG1 7-ми сегментный LED индикатор KEM-5631-ASR (OK) Любой другой маломощный для динамической индикации и подходящий по подключению.
R1* Резистор 0,125Вт 91 кОм SMD типоразмер 0805
R2* Резистор 0,125Вт 4,7 кОм SMD типоразмер 0805
R3 Резистор 0,125Вт 5,1 Ом SMD типоразмер 0805
R4 Резистор 0,125Вт 10 кОм SMD типоразмер 0805
R5-R12 Резистор 0,125Вт 330 Ом SMD типоразмер 0805
R13-R15 Резистор 0,125Вт 4,3 кОм SMD типоразмер 0805
VD1 Стабилитрон BZV85C5V1 1N4733
VT1-VT3 Транзистор BC546B КТ3102
XP1-XP2 Штыревой разъем на плату
XT1 Клеммник на 4 контакта.

Рисунок 3 – Плата печатная вольтметра на PIC16F676 (сторона проводников).

На рисунке 4 – печатная плата сторона размещения деталей.

Рисунок 4 –Плата печатная сторона размещения деталей (плата на рисунке не в масштабе).

Что касается прошивки, то изменения были внесены не существенные:

  • Добавлено отключение незначащего разряда;
  • Увеличено время выдачи результата на семисегментный LED индикатор.

Вольтметр, собранный из заведомо рабочих деталей, начинает работать сразу же и в наладке не нуждается. В отдельных случаях возникает необходимость подстроить точность измерения подбором резисторов R1 и R2.

Внешний вид вольтметра показан на рисунках 5-6.

Рисунок 5 – Внешний вид вольтметра.

Рисунок 6 – Внешний вид вольтметра.

Вольтметр, рассматриваемый в статье успешно прошел испытания в домашних условиях, проверялся в автомобиле с питанием от бортовой сети. Сбоев не было. Может отлично подойти для длительного использования.

Интересное видео

Подведу итоги. После всех изменений получился совсем не плохой цифровой вольтметр постоянного тока на микроконтроллере PIC16F676, с пределом измерения 0-50В. Всем кто будет повторять данный вольтметр, желаю исправных компонентов и удачи в изготовлении!

Вольтамперметр на PIC16F676

Этот проект - ампервольтметр (или вольтамперметр, если хотите) постоянного тока. Диапазон - до 99.9В и 9.9А (или 99.9А, зависит от прошивки).


Особенность его состоит в том, что он построен на распространённом микроконтроллере PIC16F676, однако, несмотря на это, имеет возможность одновременного отображения измеряемых напряжения и силы тока на четырёхсимвольных (или трёхсимвольных) семисегментных индикаторах, как с общим анодом, так и с общим катодом (задаётся одним резистором). При использовании четырёхсимвольного индикатора, последний сегмент отображает символ "U" для напряжения и "A" для тока. Ампервольтметр может работать и с одним индикатором, при этом кнопкой "B" можно выбирать, что будет на нём отображаться - напряжение или сила тока. В том случае, если установлены оба индикатора, этой кнопкой можно поменять местами их назначение. Кнопка "H" служит для коррекции показаний амперметра и выравнивания линейности этих показаний, если это необходимо.

up feb 2014: сейчас разработку можно найти по адресу:

Схема вольтамперметра приведена ниже. Как уже было сказано, он построен на распространённом микроконтроллере PIC16F676, на котором, в частности, собирают простые вольтметры и амперметры.


Нажмите на схему для увеличения
В виду ограниченного количества пинов у данного МК, применён регистр 74HC595. Аналогов с совпадающей цоколёвкой у этой микросхемы нет, но она недефицитна и часто применяется в подобных схемах для подключения индикаторов к МК. Для защиты выходов МК от перегрузки и повышения яркости индикаторов применены ключи на транзисторах. При использовании индикаторов с общим катодом, необходимо использовать транзисторы другой структуры, соединив их коллекторы не с +5В, а с массой, при этом резистор на 11 выводе микроконтроллера нужно переставить в другое положение. Возможно, Вам потребуется подобрать резисторы на выходе регистра и в базах транзисторов под свои индикаторы и транзисторы.

Как уже говорилось ранее, кнопка "B" позволяет поменять местами назначение индикаторов в случае, если их два. Если индикатор один, то этой кнопкой можно чередовать отображение напряжения и тока. При нажатии кнопки "H" индикаторы начнут мигать. Пока они мигают, кнопками "B" и "H" можно корректировать показания амперметра. После корректировки мигание прекратится и коэффициент корректировки будет записан в энергонезависимую память. Режим отображения, установленный кнопкой "B", также хранится в энергонезависимой памяти.

После включения индикаторы начинают светиться не сразу, а с задержкой в несколько секунд. Частота изменения показаний - около 9Гц.

Один из вариантов печатной платы для четырёх индикаторов с общим анодом. На рисунке кружками обведены необходимые исправления: нужно убрать перемычку, идущую на массу, и добавить одну маленькую перемычку.


Файлы к проекту.

Loading...Loading...